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Abstract 

We present a (suboptimal) filtering algorithm for tracking a highly maneuvering target in a 

cluttered environment using multiple sensors dealing with possibly asynchronous (time delayed) 

measurements. The filtering algorithm is developed by applying the basic Interacting Multiple 

Model (IMM) approach, the Probabilistic Data Association (PDA) technique, and asynchronous 

measurement updating for state-augmented system estimation for the target. A state augmented 

approach is developed to estimate the time delay between local and remote sensors. A multi- 

sensor probabiHstic data association filter is developed for parallel sensor processing for target 

tracking under clutter. The algorithm is illustrated via a highly maneuvering target tracking 

simulation example where two sensors, a radar and an infrared sensor, are used. Compared 

with an existing IMMPDA filtering algorithm with the assumption of synchronous (no delay) 

measurements sensor processing, the proposed algorithm achieves considerable improvement 

(especially in the case of larger delays) in the accuracy of track estimation. 

Keywords: Asynchronous (Delayed) Measurements; Multisensor Parallel Updating; Interact- 

ing Multiple Model (IMM); ProbabiUstic Data Association (PDA). 

I    Introduction 

We consider the problem of tracking a single maneuvering target in clutter. This class of problem 

has received considerable attention in the literature [1, 2, 3, 4, 9].   In target tracking systems 
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measurements axe t3^ically collected in "scans" or "frames" and then transmitted to a processing 

center [5, 6]. Asynchronous (delayed) measiurements arise in a multisensor central tracking system 

due to communication network delays, varying preprocessing times at the sensor platforms and 

possibly lack of sampling time synchronization among sensor platforms. One of the asynchronous 

measurement problems is that of out-of-sequence measurements (OOSM) where measurements at 

various sensors may arrive out-of-sequence (not in correct time order) at the central processor. 

OOSM has been considered using interacting multiple model (IMM) [6, 7, 8]. In this paper we do 

not consider OOSM but, instead, consider "in-sequence" measurements with a fixed but unknown 

relative time-delay among sensor measurements. Various sensor measurements are assumed to be at 

the same rate but not necessarily time synchronized. All measurements over one sampling interval 

(based on the local clock of the central processor) are collected at the central processor, attributed 

to one time instant and processed simultaneously. We exploit interacting multiple model (IMM) 

and probabilistic data association (PDA) techniques. It is assumed that a track has been formed 

(initiated) and the objective of this work is to investigate fixed-but-unknown relative time-delay 

(measurement timing mismatch) arising in a multisensor central tracking system. 

In [6], fixed-lag smoothing techniques have been investigated using IMM algorithm combined 

with PDA filter in a multiple sensor scenario to propose a combined IMMMSPDAF (interacting 

multiple model multiple sensor probabilistic data association filter). We exploit the basic structure 

of [1] in combination with a state-augmented approach to deal with the fixed-but-unknown relative 

time-delay. In [1] and [14] it is assumed that the sensors are collocated and (time) synchronized 

with the sampling rate. In contrast, the sensor collocation and (time) synchronization are no longer 

assumed in this paper. Also, unlike [1, 9, 12] which have used sequential updating of the state 

estimates with measurements (i.e., updating of the state estimates sequentially with measurements 

from different sensors), we use parallel updating of the State estimates with measurements (i.e., 

updating of the state estimates with all measurements at the same time). For linear systems, the 

two updating methods are algebraically equivalent but for nonlinear filtering, the parallel updating 

can yield better performance in spite of higher computational cost [4]. Ref. [14] uses parallel 

updating but has some errors: during data association, all measurements at the same time from 

different sensors are assumed to be either from clutter or from the target. The possibility that 

a measurement from sesnsor 1 may be from target while the measurement from sensor 2 may be 

clutter-induced (and vice-versa) is implicitly not allowed in [14] - this is clearly incorrect. Ref. [10] 

allows for such distinctions (hypotheses), however, it is limited to non-manevering targets. In this 

paper, we also extend the multisensor approach of [10] to maneuvering targets (see Step 4 in Sec. 

IV). 

The paper is organized as follows.   Section II presents the problem formulation.  Section III 



describes the state-augmented system approach. Section IV describes the proposed IMMMSPDAF 

algorithm for asynchronous measurements. Simulation results using the proposed algorithm for a 

realistic problem are given in Section V. Finally, Section VI presents a discussion of the results 

and some conclusions. 

II    Problem Formulation 

We assume that the target dynamics can be modeled by one of n hypothesized models. The model 

set is denoted as M" := {!,..., n} and there are total q sensors. The event that model m is in effect 

during the sampling period {tk-i,tk] is denoted by M™. For the mth hypothesized model (mode), 

the state dynamics and measurements, respectively, are modeled as 

a:fc = i^fc_iXfc_i + G^fc_i<_i (1) 

and 

z[ = K^'^Xk) + w^' for   I = l,...,q    : local model at the sensor, (2) 

where Xk is the system state at tk and of dimension Ux, z^ is the (true) measurement vector (i.e., due 

to the target) at sensor I at tk and of dimension n^/, F^i^_i and G'^j^_-^ are the system matrices when 

model m is in effect over the sampling period {tk-i,tk], and /i"*'' is the nonlinear transforrnation of 

Xk to z^. (l = l,...,q) for model m. A first-order Unearized version of (2) is given by 

zi = H^''xk + w]^'' for   Z = l,...,g (3) 

where H^' is the Jacobian matrix of /i'"'' evaluated at some value of the estimate of state Xk 

(see Sec. III). The process noise u^j and the measurement noise w^' are mutually uncorrelated 

zero-mean white Gaussian processes with covariance matrices Q^_i and R^' , respectively. At the 

initial time to, the initial conditions for the system state under each model m are assumed to be 

Gaussian random variables with the known mean E{x'^} and the known covariance PQ". The 

probabihty of model m at to, /xg^ = P{Mo"}, is also known. The switching from model M|_i to 

model Mjp is governed by a finite-state stationary Markov chain with known transition probabilities 

Pirn = Pi^iTl^k-i}- Henceforth, time tk will be denoted by k. 

Assume that there is a fixed but unknown relative time delay dk (modulo r=sampUng interval) 

at sample time tk between the local sensor clock and the central processor clock at sample tinie 

tk- [This time delay could be due to unsynchronized clocks at the two locations or due to inherent 

delay due to congestion, insufficient bandwidth etc. in the communication link between the remote 

sensor platform and the central processor.] The measurements from sensor I are sent to the central 

processor where all measurements collected between local sampling interval {tk-i,tk] are attributed 



to time tfc.  The state dynamics and measurements reported from the remote sensor platform at 

time ifc_j, (henceforth will be denoted by kai) to the center processor at time tk can be modeled as 

and 

^kai - J'kai,k-l^k-l + (^kM,k-l^k-l 

zl. = /i"*' (xfcj,) + w^'     : model of the sensor at the central processor 

(4) 

(5) 

where tkj, = t^—dki and dki is the time difference between the sampling time at the central processor 

and the measurement time at the local sensor (assume that Q <dki <T, where T is sampling time), 

Xfc^, is the system state at tk^^ and of dimension n^, i^fe^,_fe_i and Gf^,^_-^ are the system matrices 

when model m is in effect over the timing interval [tk-iitk^i] 

III    State-Augmented System 

Define the augmented state Xk from Xk as 

4 = [4,4r4-i.'"fc-i] (6) 

where a;^. denotes the transpose of Xk- Assume that there is a fixed but unknown delay, dku between 

the central processor and the remote sensor I platform. Using the above definitions (1, 6) and the 

measurement delay, dku the augmented state equation may be written more compactly as 

5jt=^M-i^fc-i+^M-i^r 

and 

dl 
dkl = d(^k-i)l + Vk-i 

(7) 

(8) 

where u^Li is a small processing noise assumed to be Gaussian noise with zero mean and (very) 

small but nonzero variance. Note that the process noise in (7) is v^ (at time k not at time k — 1). 

Above equations (7) and (8) can also be absorbed into another augmented state x^ as 

Xk 

Xk 

dkl 

= F^k-iXk-i + GJ^fc-iC      where   C = (9) 

^'k = K)^fc)^fc-i)^fc-i)'^fci]i and Fk,k-i and Gk,k-i are defined in Sec. V (see (46)-(53)). Using the 

augmented state (9) the counterparts to (2) and (5), respectively, are 

zi = h"''\xk) + w'^'' = h"^'\[I,0,OAO]xk)+w]^'' (10) 

and 

4 = /i--'(£,,) + ^.r'^ = /i--'([0,0,F,-,fc_i,G'r,,,_i,0]£,) + <'' (11) 



for both measurements from local sensor and from remote sensor, respectively. To keep the notations 

and details to a bare minimum, we will consider the case of two sensors only and furthermore, we 

will assume that one of the sensors is either collocated with or is synchronized with the central 

processor, so that we will drop the subscript I from dki- For more than two sensors, we need to 

augment Xk with additional d^'s (total q — 1): in essence, these delays are relative to one of the 

sensors (reference sensor). 

The following notations and definitions are used regarding the measurements at sensor I. Note 

that, in general, at any time some measurements may be due to clutter and some due to the target, 

i.e. there can be more than a single measurement at time k at sensor /. The measurement set (not 

yet validated) generated by sensor Z at time fc is denoted as 

Zi:={zf\zf\...,zr') (12) 
where mi is the number of measurements generated by sensor / at time k. Variable z^^'^^ (i = 

l,...,m/) is the ith measurement within this set. The validated set of measurements of sensor I at 

time k will be denoted by Yjf, containing m/ (< m/) measurement vectors. The cumulative set of 

vahdated measurements from sensor I up to time k is denoted as 

z'=«:={y/,r2',...,n'}. (13) 

The cumulative set of validated measurements from all sensors up to time k is denoted as 

Z'=:={Z'=(^),Z'=(2),...,Z'=(9)} (14) 

where q is the number of sensors. 

Our goal is to fuid the state estimate 

Xk\k-=E{xk\Z'') (15) 

and the associated error covariance matrix 

Pk\k\=E{\xk-h\k\\ik-h\k]'\Z''} (16) 

where a;^ denotes the transpose of Xfc. > 

IV    IMMMSPDAF Algorithm for Asynchronous Measurements 

We now modify the IMM/(J)PDA algorithms of [9] and [12] to apply to the multi-sensor asyn- 

chronous measurements system. We confine our attention to the case of 2 sensors; however, the 

algorithm can be easily adapted to the case of arbitrary g sensors. We will only briefly outHne the 

basic steps in "one cycle" (i.e., processing needed to update for a new set of measurenients) of the 

IMMMSPDA filter. 
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Assumed available: Given the state estimate i^i|;t-i •=-^{^fc il^k^i^^'' ^}, the associated 

covariance P^in._i, and the conditional mode probabiHty /i^^ := P[MJ^j\Z''~^] at time k- -1 for 

each mode m 6 M". 

Step 1. Interaction - mixing of the estimate from the previous time (im 6 M'^) 

predicted mode probability: 

i 

(17) 

mixing probabiHty: 

M*!-:= P[Ml_i|Mr,Z*=-^] =Pi^Ml-i/Mr- (18) 

mixed estimate: 

x^l|.-i := ^{%-ilMr,^'^-'} = ^^I-ilfc-i/x'l"^. 
i 

(19) 

covariance of the mixed estimate: 

P^x\k-i := E{\x,-, - it,\k-x][ik-x - d|fc-i]'|Mr, Z''-'} 

= 2^{Pk-i\k-i + Ffc-i|fe-i - Xk_nk-i][xk-i\k-i - Xk-i\k-i] }A^ '   • 
i 

(20) 

Step 2. Predicted state and measurements for sensors 1 and 2 (im 6 M^) : 

state prediction: 

i^fc_i := E{ife|Mr,^'=-H = ^r-i^°-i|fc-i- (21) 

state prediction error covariance: 

Pk\k-x ■■= E{[ik - 5^;t-i][£fc - 5^fc-i]'iMr, z'^-'} = Fr_iPferi|fe_ii'^'iV+ Gr-iQr-iGr-] • (22) 

The mode-conditioned predicted measurement for sensor Z is 

' m.l .     um.lfz,'"^       \ 
Zk   ' ■.= h    {Xk\k-i). (23) 

Using the Mnearized version (3), the covariance of the mode-conditioned residual 

^k       — ^k   ~^k   ^ 

is given by (assume q=2, the case of 2 sensors) 

5^^= s{i/;^''('V^''(')'iMr,z'^-^} = ^r'Pjt^^^^ (24) 

6 

(25) 



where Hj^' is the first order derivative (Jacobian matrix) of /i™'''(.) evaluated at the state prediction 
i.m l{i) ^k\k-i (see (23)). Note that (24) and (25) assume that Zj^ ' originates from the target. The results 

(24) and (25) do not depend upon the actual measurements. 

As mentioned earlier, since our approach to the problem deals not only with the asynchronous 

measurements but also with multiple simultaneous measurements [10, 11] arising from two separate 

sensors that are tracking a single target through a common surveillance region, a method for fusion 

of multiple measurements has to be devised. In order to do this, now the combined covariance S^ 

of the mode-conditioned residual obtained from (24) and (25) also needs to be considered as follows 

m.l F; 

£Vm,2 
•"fc 

^k\k-l [ «fc -Hfc 
[^r' 0 

+ . 

0 pm,2 
^k      . 

(26) 

Step 3. Measurement vcdidation for sensors 1 and 2 (im € M"^ : 

There is uncertainty regarding the measurements' origins. Therefore, we perform validation for 

each target separately. One sets up a validation gate for sensor I centered at the mode-conditioned 

predicted measurement, Zj^ ' . Let (|J4| = det{A)) 

m„ (max   ST'^\\ 

Then measurement Zj^^' (i=l,2,...,m() is validated if and only if 

Jii) £ma,lyrgma,h    ^r^-'W _ £"»a,il 'k    -^k    i'Kn  "[4"'-d<7 (27) 

where j is an appropriate threshold. The volume of the validation region with the threshold 7 is 

^fc':=Cn.,7"^""|5rY^' (28) 

where n^i is the dimension of the measurement and c„^, is the volume of the unit hypersphere of 

this dimension (ci = 2, C2 = n, C3 = 47r/3, etc.). Choice of 7 is discussed in more detail in [4, Sec. 

2.3.2]. After performing the validation for each target separately, we deal with all the validated 

data for measurement fusion. 

Step 4-  State estimation with validated measurement from sensors 1 and 2 (im € 

M"; : 

Prom among all the raw measurements from sensor I at time /c, i.e. Z[ := {zk^\z^'^\ ...,z^'^'^), 

define the set of validated measurement for sensor I at time k as 

,/(!),/(2) '('"Oi yi ._ r 'u; ,,n^;       ,,H"^in 
^fc •— xHk   '2/fe   j—jJ/fc      / 

where rhi is total number of validated measurement for sensor I at time k and 

Vk    — ^k 

(29) 

(30) 

where 1< Zi < ^2 < — < Imi < mi when m/ 7^0. Define the association events (hypotheses) ^^'•' as 

follows (here we follow [10]) 



• Of^ : none of the measurements in 1^^ or Y^ is target originated. 

• 61^'^: only 2/fc    in Y^ is a target measurement, all other measurements in Y^ or Y^ are clutter, 

i = 0,j = l,...,m2. 

• 6]^ : only y^}^' in 1^^ is a target measurement, all other measurements in Yj^ or Y^ are clutter, 

i = l,...,ihi,j = 0. 

• ^k''- Vk    ^^^ Vk     ^"^ ^k ^"^^ ^ki respectively, are target measurements, all other measure- 

ments are clutter, i = 1, ...,mi, j = 1,..., m2. 

Therefore, there are a total of mima+mi-f-ma+l possible association hypotheses, each of which 

has an association probabiUty. Define the mode-conditioned association event probabilities as 

0r''-=PW\Mjr,Y,^,YlZ''-'}. 

Exploiting the diffuse model for clutter in [1, 4], it turns out that 

grn,0,0 ^ ^{l-PD,PG,)il-PD^PG,)       .^Q   -Q 

(31) 

^m,OJ ^ ^ PD2(1-PDIPGI)N 

-(V72pF 

P] Tv^W 

Tn2 

,">,l(i).„ (jm,l 

,   i = 0,  j = l,...,m2 

;o,5: 
(32) 

N N 

*m2 

m,20).„ c,m,2 

l,...,mi,   j = 0 

;o-s. 
'THm2(V'i)'**l-l(V.^)*2-l 

PDIPDJ 
i = l,...,mi,  j = 1, ...,m2 

where PDI and Pijj are the detection probabilities that the sensors 1 and 2 detect the target, 

respectively, Po^ and Pcj are probabilities the target is in the validation region observed from 

sensors 1 and 2, respectively, C is a normahzation constant such that X]£=o S^o PT'^''' — 1 ^"^ ^^'^ 

N[x;y,P]:=\27rP\-^/^exp -2^x-y)'P ^{x-y) 



Define the mode-conditioned innovations i^^'*'"' as 

I'l 
Tn,0,0 

Vi 
,"i,0,j _ 

0. -'"•jlxl 

r^W) 

m,i,o 

,"i,«j _ 

I'i 

m,l(t) 

-'n-i2xl 

.'".IC*) 

1^1 
,'".2(i) 

,   z = 0,i = 0 

,   i = 0, j = l,...,m2 

,   i = l,...,Tni, j = 0 

,   i = l,...,mi, j = l,...,m2. 

The hkehhood function for each mode m is 

ifli    7712 

t=o i=o 

where 

(PDiPGi)(l-Pg2PG2)/mi f  m,l(i).p   c,m,l 

(PDiPcJ(PD,PG2)/(mim2)  ^ j, L'n.iJ.Q   c: 

,   r = 0, j = l,...,m2 

,   i = l,...,mi, j = 0 

,     i = 1, ...,mi, j = l,...,m2- 

(33) 

(34) 

(35) 

Using ifc|fc_i (from (21)) and its covariance Puk_i (from (22)), one computes the partial update 

x^^ and its covariance PJ^/^ according to the standard PDAF [1], except that the augmented state 

is conditioned on 9]^^ with data fusion from sensors 1 and 2. Define the combined mode-conditioned 

innovations 

mi  fh2 

^r:=EE/5r''^r^- (36) 
i=0 j=0 

Therefore, partial update of the state estimate 

^/c|A;     — -t^ Y^kWk  y^k ) ^        ^^k^^k J - ^k\k-l + ^k       ^k (37) 



where Kalman gains, WT"'*''', are computed as 

Wl m,0,0 = 0, for   z = 0, j = 0 

= < 
Wr'''° = 4Vi[^r''[<??']-' 0],    for   i^O,j = 0 

w^r°'''=^itife-i[0Hr''[5r'n, for i=o,j^o 

. Wr''^' = 4Vi^"'['^r]-'.    for   r^O.j^O, 
•^       f r  "* m  1'       *" m O'l 

and H^ =  if^ '    iJ^ '    . Therefore, mode-conditioned update of the state estimate 

(38) 

mi m2 

1=0 j=0 

and covariance of x^}. 

_ nil J7I2 . • ■ • . ./ 

i=0,(i,i)#(0,0)j=0 

t=Oj=0 

(39) 

(40) 

mi m2 

i=Oj"=0 

mi  ma . . 

i=Oj=Q 

Step 5.   Update of mode probabilities (Vm E M^) : 

(41) 

where C is a normalization constant such that E/^^ — ^■ 
m 

Step 6 Combination of the mode-conditioned estimates (im € M'^) : The final aug- 

mented state estimate update at time k is given by 

=^fcifc = E^^fcifc/^r (42) 

and its covariance is given by 

Pk\k = Y,rnY^k+[^T\k-h\k][xk\k-h\k]'jfJ'T (43) 

Prom the final augmented state (see (42)), the state filtered vector ijfc|fe and the state smoothing 

vector £fc-i|fc can be easily obtained. 

V    Simulation Example 

The following example of tracking a highly maneuvering target in clutter is considered. The target 

starts at location [21689 10840 40] in Cartesian coordinates in meters. The initial velocity (in m/s) 

is [-8.3 -399.9 0] and the target stays at constant altitude with a constant speed of 400 m/s. Its 

10 



trajectory is a straight line with constant velocity between 0 and 20s, a coordinated turn (0.15 

rad/s) with constant acceleration of 60 m/s^ between 20 and 35s, a straight Una with constant 

velocity between 35 and 55s, a coordinated turn (0.1 rad/s) with constant acceleration of 40 m/s^ 

between 55 and 70s, and a straight line with constant velocity between 70 and 90s. The target 

motion models are patterned and modified after [1]. In each mode the target dynamics are modeled 

in Cartesian coordinates as 

^k = J^k,k-lXk-l + <^k,k-l^k 

-          pm - j   /nrm ~m 
^ki = i'ka,k-\Xk-l + (^ka,k-lVk 

(44) 

(45) 

where the augmented state of the target consists of position, velocity, acceleration, and the process 

noise in each of the three Cartesian coordinates {x, y, and z) at t/- and tk-i as well as the delay 

time dk at tk- Thus both Xk and Xk^ are of dimension 25 (n^ = 25). Three maneuver models are 

considered in the following discussion. The system matrices Fk,k-i, Gk,k-iy Fkd,k-i and Gk^^k-i 

are defined as 

Tym 
^k,k-l 

m-1 0 
k,k-l - 

Gf,k-i   0 
(46) 

rim 
^kd,k-l 

Fr,,k-i 0 
/om 
^kd,k-l 

^S,fc-1     ° 
(47) 

where 

^k,k-\ — k,k-\ (48) 

771m 
^ki,k-i 

^kd,k-l     *^ka,k-l 
^ka,k-l (49) 

pm 0 0 Qm 0 0 

^k,k-l — 0 pm 0 '      ^k,k-\ — 0 Qm 0 1 

0 0 pm 0 0 Qm 

><r 0 0 ' G^ 0 0   " 

^kd,k-\ - 0 FT 0 /~im 0 Gf 0 

0 0 FT . 0 0 Gf 

(50) 

(51) 

11 



Model 1. Nearly constant velocity model with zero mean perturbation in acceleration 

" 1 r 0" r T^ 1 
2 

F' = 0    1    0 

0   0    0 

) Gi = T 

0 

) 

"l   (T-dk) 0 " r {T-dk? 
2 

Fi = 0         1 0 ,       Gl = (T - 4) 

0         0 0 0 

(52) 

(53) 

where T is the sampling period. The standard deviation of the process noise of M^ is 5 m/s^ (as 

in[l]). 

Model 2. Wiener process acceleration (nearly constant acceleration motion) 

(54) 

'l   T   ?■ T2 

F2 = 0    1    T ,      G' = T 

0   0     1 1 

"l   (T-dk) il^ 

F! = 0         1 {T - 4)) ? 

0         0 1 

G3 = 

2 

(T-dk) 

1 

(55) 

The standard deviation of the process noise of M^ is 7.5 m/s^ (as in [1]). 

Model 3. Wiener process acceleration (model with large acceleration increments, for the onset 

and termination of maneuvers), with F^ = F^, G^ = G^, F| = F| and G^ = G^. The standard 

deviation of the process noise of M^ is 40 m/s^ (as in [1]). 

The initial model probabilities are /j.^ = 0.8, /i§ = 0.1 and /ZQ = 0.1.   The mode switching 

probability matrix is given by (as in [1]) 

Pll Pl2 Pl3 

P21 P22 P23 = 

P31 P32 P33 . 

0.8 0.0 0.2 

0.0 0.8 0.2 

0.3   0.3   0.4 

(56) 

The Sensors: Two sensors are used to obtain the measurements. Sensor 1 and Sensor 2 are 

located at [a;i,yi,2;i]=[-4000 4000 0] m and [a;2,y2,-Z2]=[5000 0 0] m, respectively, and the central 

processor is collocated with sensor 1 platform (we assume that there is no time delay between sensor 

12 



1 and central processor and there is fixed but unknown time delay between sensor 2 and central 

processor). The measurements from sensor I for model m are z[ = h"^'\xk) + w^' for Z = 1 and 2, 

reflecting range and azimuth angle for sensor 1 (radar) and azimuth and elevation angles for sensor 

2 (infrared). The range, azimuth, and elevation angle transformations, respectively, are given by 

n   =   {{x-xif-^{y-yif + {z-zif}^''' (57) 

ai   =   tan~^[{y-yi)/{x-xi)] (58) 

ei   =   tan-'[iz-zi)/{ix-xif + {y-yiff']- (59) 

As we see from (1), (2), (4) and (5), the measurements obtained from sensors 1 and 2 can be 

expressed as 

zl = h^{[I,0,Q,0,0]xk) + wl (60) 

zl = h''i[OAF^^,k-i,GZ,k-i,0]xk)+wl <61) 

ml 
The measurement noise ly^ ' for sensor I is assumed to be zero-mean white Gaussian with known 

covariances, R^ = diag[gr,gai] = diag[400m^,49mrad^] with Qr and qai denoting the variances 

for the radar range and azimuth measurement noises, respectively, and i?^ = diag[ga2,ge] = 

diag[4mrad^,4mrad^] with qa2 and qe denoting the variances for the infrared sensor azimuth and 

elevation measurement noises, respectively. The sampling interval was r=ls and it was assumed 

that the probability of detection Pd=l for both sensors. 

The Clutter: For generating false measurements in simulations, the clutter was assumed 

to be Poisson distributed with expected number of Ai = 13 x 10~^/m mrad for sensor 1 and 

A2 = 7 X 10~^/m mrad for sensor 2 [1, case 1]. These statistics were used for generating the 

clutter in all simulations. However, a nonpaxametric clutter model was used for implementing all 

the algorithms for target tracking. 

Other Parameters: The gates for setting up the vaUdation regions for both the sensors were 

based on the threshold 7=16. With the measurement vector of dimension 2, this leads to a gate 

probability PG=0.997 (see [4, pages 95-96]). 

Simulation Results: The results were obtained from 100 Monte Carlo runs. Fig. 1 shows the 

true trajectory of the target. Fig. 2 shows the delay estimates (given unknown but fixed timing 

mismatch between the two sensors) based on 100 Monte Carlo runs. Fig. 3 shows the RMSE (root 

mean-square error) for the filtered state and the smoothed state (lag =1) in position, velocity and 

acceleration. It is seen from Fig. 3 that the smoothing method shows better accuracy than the 

filtering method as well described in [9]. Fig. 4 shows a comparison among the performances of the 

proposed IMMMSPDAF algorithm deahng with asynchronous measurements with unknown but 

fixed dk, with known d, and the standard IMMMSPDAF algorithm with the assumption that d=0 
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Figure 1: Trajectory of maneuvering target (read left to right, top to bottom), (a) Position in xy 

plane, (b) x and y velocities, (c) x and y accelerations, (d) magnitude of accelerations 

always applies. It is seen from Fig. 4 that when the unknown but fixed timing mismatch dk is more 

than one fifth of the sampling time, the performance improvement is significant compared with the 

standard IMMMSPDAF algorithm that ignores the time-delay d. 

VI    Conclusions 

We investigated an IMMMSPDAF algorithm with asynchronous measurement (there is unknown 

but fixed timing mismatch between sensor platforms) for tracking a highly maneuvering target in 

clutter. The proposed algorithm was illustrated via a simulation example where it outperformed 

a standard IMMMSPDAF algorithm that ignored the possible timing mismatch (especially when 

the possible timing mismatch is more than one fifth of the sampling time). 
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Figure 2: Estimation of delay (given unknown but fixed timing mismatch between two separated 

sensors) based on 100 Monte Carlo runs (read left to right, top to bottom), (a) d = 0. (b) d = 

O.IT. (c) d = 0.3T. (d) d = 0.5T. (e) d = 0.7T. (f) d = 0.9T. (T = sampling rate) 
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Figure 3: Comparison of filtering and smoothing (lag=l) for various delay values (acceleration, 
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d = O.IT. (c) d = 0.3T. (d) d = 0.5T. (e) d = 0.7T. (f) d = 0.9T. (T = sampling rate). In the 

figiire legends, estimation refers to filtering and smoothing is with lag=l. 
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Figure 4: RMSE in position using IMMMSPDAF under various scenarios of known delay, estimated 

delay and ignoring delay, for various delay values (read left to right, top to bottom), (a) d = 0. 

(b) d = O.IT. (c) d = 0.3T. (d) d = 0.5T. (e) d = 0.7T. (f) d = 0.9T. (T = sampling rate). Unless 

otherwise stated, the results are for filtering. 
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